

24th USAEE/IAEE North American Conference Washington DC

ISSUES

- Electricity Crisis In Developing World
- How and Why Central Grid Failed
- Distributed Renewables Vs Central Grid
- Case Study (JABA Village, India)

Global Electricity Crisis...

- No access 1.7 billion
 - Rural Economies
 - South Asia 730 m
 - Africa 580 m
- Poor quality Access >2 billion
 - Both Rural & Urban

Rising Expectation

High Cost for Low Income consumers

1/2 the world can no longer wait

Electricity a law and order issue

Recent government change in India

- Access
 - Electricity 55% (mostly poor quality)
 - Clean cooking fuel 26%
- Financial Mess
 - Bankrupt Utilities 6 Bn US\$ annual loss
 - Politicized and Unstable Grid Business
 - Repeated Failure of Reforms
 - 1992, 1995, 1998, 2002, 2004

Initial Public Sector 1947 - 1992

Maximum capacity 5000 mw/yr

Private Sector Failures 1992 - 2002

Back to Public Sector 2002

- Global and domestic funding squeezed
- Maximum capacity added 2000 mw/yr
- ENRON (Dabhol)& AES (Orissa)fiasco
- Planned capacity 10,000 mw/yr!
- With 10b US\$ gross subsidy in 2002!!

Bankrupt Utilities and Artificial Subsidy

Learning Path of Reforms

- Supply Side Myopia
 - Generation Privatization 1992-1998
 - Distribution Reform 1998-2004
- Demand Side Not Yet...
 - Consumer Income
 - Consumer Need

Analysis

Thinking Only Economics,
No Environment Please!

Backdrop: USA vs. India Supply

USA India

Electrification Started pre-1900

75 m Urban Rich Using Commercial energy

New York, Chicago, Other metros

After 100 Years post-2000

All 300 m people 3500 BU

Why is it so success in the USA?

250 m Rural poor Using biomass/Castor oil

Bombay, Calcutta, Other Cities

500 m people 400 BU 500 m people 0 BU

But not in India!! 50% in dark

>70% Rural and/or Poor

USA vs. Indian Rural Demand

Rural population

HH Income in US\$

Electricity spending %

Electricity Cost in C/kWh

Start of Rural Electrification

USA

<25% (61m)

>30,000

<0.5

10-25

1936

India

>70% (700m)

<1000

>5

>15

1960

India vs. USA Grid Demand

	USA Rural	USA Urban	India Rural	India Urban
Customers/mile	5.8	35	20 (5 can actually pay)	200
Annual Revenue / mile	7000\$	59,000\$	1500\$	15,000\$
Annual Income / household	60,000\$	70,000\$	1200\$	2400\$
Annual Revenue / customer	1200\$	1700\$	36\$	75\$

Lacks Scale: Inappropriate Technology for Rural or Poor

Urban Grid Market

Rural Grid (Non)Market

Joint Unstable Market

Grid Subsidy

- Govt. Direct Subsidy
 - Low tax revenue
 - Inefficient Administration

- Industry Cross Subsidy
 - Low consumer surplus
 - Three vicious circles

Three Vicious Cycles

- 1. High cost \rightarrow exit of valued customers \rightarrow high cost
- 2. Revenue shortfall → poor quality → low willingness & ability to pay→ more shortfalls
- 3. Investment shortfall → public finance→ rent seekers: monopolist & customers → all problems

Result: High cost, artificial subsidy, rampant corruption, losses, low investment, and no development.

Dilemma

• Electrification needs investment, but, who will invest without return?

Rich countries need subsidies for rural grid market, can poor countries avoid it?

Subsidies on Kerosene? Grid? Or, Renewables?

Grid Vs. Renewables

Central Grid

- Strong Economy of Scale
 Increasing cost
- Good for Urban Rich
 Poor can not support it
- Monopolistic still not a friend of Conservation

Large Plant - Low per unit cost Wasteful Use - High total cost

Distributed Renewables

- Strong Learning Curve Reducing cost
- Good for Rural Poor Rich also prefer it
- Competitive still a true friend of Conservation

Conservation by design

Automatic Demand Control

Myths of Central Grid

- Grid electricity most flexible?
 - Not dispatchable in mid-night: high supplemental fuel cost:run with a loss.
 - Dangerous and intrusive in its entire value chain
- Grid electricity cost low? (averages!!)
 - Only for bulk consumers
 - Total cost may be higher for a rural household
 - Price per kWh not Total outlay
 - Marginal investment cost and fuel risks
 - long-term reliability and litigation risks (40 b dollar US)
 - Safety and security risks (No pollution, global warming)

True Average Cost of Electricity??

	USA		India	
Parameter of Cost	Grid Renewables		Grid	Renewables
Whole sale bulk	3 – 10 cents	3 – 20 cents	3 – 12 cents	3 – 30 cents
Average Distribution	8	20 - 50	10	20 - 30
Distribution Urban	5 – 15	20 - 50	5 - 15	20 - 30
Distribution Rural	15 - 25	7 – 50	15 - 30	7 – 30
Marginal fuel+capital costs	+20 %	7 – 50	+20 %	7 - 30
Distribution with Conservation	20 – 50	7 - 50	20-80	7 - 30
End-user effective price Reliability/risk	+10%?	7 - 50	+30%?	7 - 30
End-user's social cost	??	<7 - 50	??	<7 - 30
End-user's environmental cost	??	??	??	??

End of Grid Age? Rural India earlier: Urban USA later

Needs Analysis: Facts of Renewable Electricity

- Too little
 - Poor can only afford a little (Kerosene Vs. Solar Lamp)
- Too Intermittent and unreliable
 - Grid Unavailable or Unreliable too
 - Cooling/heating/irrigation do not need continuous supply
 - Can use hybrid models
- Cannot be stored
 - Willing to schedule and conserve to minimize storage
 - Easy to store at sub-kWh level
 - First Conserve, Then, Design and Use (Combo Solar Lamp, TV, Laptop and Radio)

Sustainable & Competitive Solutions (Multiple Markets - Multiple Technologies)

Case Study – JABA village, India

- Study objective
- Demography & Data collection
- Proposed Solution
- Implementation Plan

Can Energy Cure Poverty? How?

- Grid Electricity failed in 30 years;
 - Never claimed it can
- Can Renewables help?
 - Solar
 - Hydro- No wind at this site
 - Biogas
 - Biomass
- Field Survey done: Great local enthusiasm
- Actual Project in pipeline: part of a PhD thesis

Demography

Households

- Toilets
- Water Pump
- Energy in households
 - Fuel Wood
 - Kerosene
 - LPG
 - Electricity
 - Solar Lantern

417

100 (Income <100\$/m)

4 (Income > 1000\$/m: hardly live here

HANGIRA BAD

30+ 30 low cost (2003)

10+ 10 hand pump (2003)

THE THE THE THE	CANAL	
	ROAD	

All (90 kg/ house hold)

All !(3 ltr./ house hold))

4 from 1995

40 from 1970

12 from 2003

Polluting

Inferior fuel

High Cost

Unreliable Subsidized

New Technology

Energy Use

	Quantity per person	Price in US cents per unit	Total spending In USD	% Income spent
Electricity	100 kWh	6	6	6%
Bio mass	80 kg	1	0.8	0.8%
Cattle dung	10 kg	0	0	0
Kerosene	3 ltrs	22	0.6	0.6%

Electricity Appliances (Non)Use

	Heating/ Washing	Water heater	Refrigera tor	Water Pump	Tube- light	Fan	TV	Elect Bulb
Total numbers	1	2	4	8	17	78	32	184
HHs those have	1	2	4	8	14	32	32	40
% Of deprived household	99%	98%	96%	92%	87%	69%	69%	62%

Who gets Fuel Subsidies?

Subsidized fuel	Not Used by Poor a lot	Used by Rich a lot	No. of days income required for first cost
Electricity	Can not afford	Lighting, entertainment, cooking, cooling	50-100\$ 1 month for connection alone (wires, protection, running expense)
Biogas	Can not afford	Cooking	80 – 100 \$ 1 month/yr Raw material (labor, pump, water,)
Kerosene	Using for light	Cooking	1 day/m for Poor's running expenses
SPV/ Solar Lantern	May afford With credit	As emergency light / Camping/ portable torch	1 day/m for poor: running mortgage cost

- High direct costs for a low consumption
 - Initial deposit and side payment
 - Costly metering/protection; still unsafe (shock, sparks, stravoltage, and damage)
 - Connected but not reliable; Back up fuel lamp/ battery
 - High cost wiring still not mobile; extra wire for outdoor work or battery torch
- Lost labor time
 - procure, maintain, store and operate multiple inferior technologies

Economic Costs for Lighting

Technology Rs/month	Grid	Kerosene	Solar
Capital	25	0	50
Energy	45	105	0
Back-up	75	0	35
Labor	90	180	20
Total	235(5\$)	285(6\$)	105 (2.2\$)

Economy Saves 2.8-3.8\$/month/house = say 3.3\$x12

(138 m*40\$/Yr=5.5 billion \$/y) Government Savings on Subsidy=.8+2=2.8 billion \$/y

Proposed Solution

- Rural renewables to drive Supply and Demand
 - SPV based Light and Entertainment
 - Portable, Clean, Reliable & Cheap Radio Lantern
 - Efficient TV, Fans, Air coolers, Refrigerators
 - Biogas and/or Solar Cooking/Heating
 - Biomass based Rural Industry
 - Cold storage, grinding, carpentry, water pumping, fuel and food processing
- Replace Kerosene and Grid Subsidies
- Increase Investment and Education

Market Segmentation

Renewables after 10 Years

Enabling Environment

- Technology Commercial but Needs
 - Rural Marketing to Build Awareness
 - Micro Financing To Spread Fixed Cost
 - After Sales Service to Sustain Sales
- Need for subsidies?

Micro Financing

- Willing to pay higher interest rate
 - Gramin Bank Bangladesh and India
 - No powerful political support, also care for social stigma
 - Lest have to revert back to costly alternative: grid and kerosene
- Poor never default for a livelihood financing
- Increased income and reduced consumer risk accelerates repayment

Income increases affordability

- Increased/Flexible Work Hours
- Enhanced Income Opportunities
 - Jobs in Renewables Value Chain
 - Rural Enterprise: cell phone/laptop based
 - Rural Agriculture: farm/dairy/flowers/herbs
- Improved Health/Sanitation
- Heightened Productivity

Diverging Grid: Converging Renewables

Monopoly Grid Increases Rural Supply Gap

Modular SPV Closes The Gap

Implementation Plan

Present and Possible Lighting in JABA by Caste Groups

Renewable closing the gap

Conclusion

- Regulating electric industry
 - neither necessary nor sufficient
 - increases phantom subsidies
- Subsidy to inferior technologies retarding newer technologies
- Renewables bringing competition faster and wider

Questions

???